Home | Menu | Poem | Jokes | Games | Biography | Omss বাংলা | Celibrity Video | Dictionary

World Population Day

Biology of Snake

When compared, the skeletons of snakes are radically different from those of most other reptiles (such as the turtle, right), being made up almost entirely of an extended ribcage.


The skeleton of most snakes consists solely of the skull, hyoid, vertebral column, and ribs, though henophidian snakes retain vestiges of the pelvis and rear limbs. The skull of the snake consists of a solid and complete braincase, to which many of the other bones are only loosely attached, particularly the highly mobile jaw bones, which facilitate manipulation and ingestion of large prey items. The left and right sides of the lower jaw are joined only by a flexible ligament at the anterior tips, allowing them to separate widely, while the posterior end of the lower jaw bones articulate with a quadrate bone, allowing further mobility. The bones of the mandible and quadrate bones can also pick up ground borne vibrations. The hyoid is a small bone located posterior and ventral to the skull, in the 'neck' region, which serves as an attachment for muscles of the snake's tongue, as it does in all other tetrapods.

The vertebral column consists of anywhere between 200 to 400 (or more) vertebrae. Tail vertebrae are comparatively few in number (often less than 20% of the total) and lack ribs, while body vertebrae each have two ribs articulating with them. The vertebrae have projections that allow for strong muscle attachment enabling locomotion without limbs. Autotomy of the tail, a feature found in some lizards is absent in most snakes. Caudal autotomy in snakes is rare and is intervertebral, unlike that in lizards, which is intravertebral—that is, the break happens along a predefined fracture plane present on a vertebra.

In some snakes, most notably boas and pythons, there are vestiges of the hindlimbs in the form of a pair of pelvic spurs. These small, claw-like protrusions on each side of the cloaca are the external portion of the vestigial hindlimb skeleton, which includes the remains of an ilium and femur.

Internal organs

1: esophagus 2: trachea 3:tracheal lungs 4: rudimentary left lung 4: right lung 6: heart 7: liver 8 stomach 9: air sac 10: gallbladder 11: pancreas 12: spleen 13: intestine 14: testicles 15: kidneys
Anatomy of a snake. 1 esophagus, 2 trachea, 3 tracheal lungs, 4 rudimentary left lung, 5 right lung, 6 heart, 7 liver, 8 stomach, 9 air sac, 10 gallbladder, 11 pancreas, 12 spleen, 13 intestine, 14 testicles, 15 kidneys.

The snake's heart is encased in a sac, called the pericardium, located at the bifurcation of the bronchi. The heart is able to move around, however, owing to the lack of a diaphragm. This adjustment protects the heart from potential damage when large ingested prey is passed through the esophagus. The spleen is attached to the gall bladder and pancreas and filters the blood. The thymus gland is located in fatty tissue above the heart and is responsible for the generation of immune cells in the blood. The cardiovascular system of snakes is also unique for the presence of a renal portal system in which the blood from the snake's tail passes through the kidneys before returning to the heart.

The vestigial left lung is often small or sometimes even absent, as snakes' tubular bodies require all of their organs to be long and thin. In the majority of species, only one lung is functional. This lung contains a vascularized anterior portion and a posterior portion that does not function in gas exchange. This 'saccular lung' is used for hydrostatic purposes to adjust buoyancy in some aquatic snakes and its function remains unknown in terrestrial species. Many organs that are paired, such as kidneys or reproductive organs, are staggered within the body, with one located ahead of the other.

Snakes have no lymph nodes.

An adult Barbados threadsnake, Leptotyphlops carlae, on an American quarter dollar.


The now extinct Titanoboa cerrejonensis snakes found were 12–15 meters (39–49 ft) in length. By comparison, the largest extant snakes are the reticulated python, which measures about 9 meters (30 ft) long, and the anaconda, which measures about 7.5 meters (25 ft) long and is considered the heaviest snake on Earth.

At the other end of the scale, the smallest extant snake is Leptotyphlops carlae, with a length of about 10 centimeters (4 in). Most snakes are fairly small animals, approximately 1 meter (3 feet) in length.

A line diagram from G.A. Boulenger's Fauna of British India (1890) illustrating the terminology of shields on the head of a snake.


The skin of a snake is covered in scales. Contrary to the popular notion of snakes being slimy because of possible confusion of snakes with worms, snakeskin has a smooth, dry texture. Most snakes use specialized belly scales to travel, gripping surfaces. The body scales may be smooth, keeled, or granular. The eyelids of a snake are transparent "spectacle" scales, which remain permanently closed, also known as brille.

The shedding of scales is called ecdysis (or in normal usage, molting or sloughing). In the case of snakes, the complete outer layer of skin is shed in one layer. Snake scales are not discrete, but extensions of the epidermis—hence they are not shed separately but as a complete outer layer during each molt, akin to a sock being turned inside out.

The shape and number of scales on the head, back, and belly are often characteristic and used for taxonomic purposes. Scales are named mainly according to their positions on the body. In "advanced" (Caenophidian) snakes, the broad belly scales and rows of dorsal scales correspond to the vertebrae, allowing scientists to count the vertebrae without dissection.

Eye scales visible during the molt of a Diamond Python.

Snakes' eyes are covered by their clear scales (the brille) rather than movable eyelids. Their eyes are always open, and for sleeping, the retina can be closed or the face buried among the folds of the body.


Molting serves a number of functions. Firstly, the old and worn skin is replaced; secondly, it helps get rid of parasites such as mites and ticks. Renewal of the skin by moulting is supposed to allow growth in some animals such as insects; however, this has been disputed in the case of snakes.

A snake shedding its skin.

Molting occurs periodically throughout a snake's life. Before a molt, the snake stops eating and often hides or moves to a safe place. Just before shedding, the skin becomes dull and dry looking and the eyes become cloudy or blue-colored. The inner surface of the old skin liquefies. This causes the old skin to separate from the new skin beneath it. After a few days, the eyes clear and the snake "crawls" out of its old skin. The old skin breaks near the mouth and the snake wriggles out, aided by rubbing against rough surfaces. In many cases, the cast skin peels backward over the body from head to tail in one piece, like pulling a sock off inside-out. A new, larger, brighter layer of skin has formed underneath.

An older snake may shed its skin only once or twice a year. But a younger snake, still growing, may shed up to four times a year. The discarded skin gives a perfect imprint of the scale pattern, and it is usually possible to identify the snake if the discarded skin is reasonably intact. This periodic renewal has led to the snake being a symbol of healing and medicine, as pictured in the Rod of Asclepius.


Snake vision varies greatly, from only being able to distinguish light from dark to keen eyesight, but the main trend is that their vision is adequate although not sharp, and allows them to track movements. Generally, vision is best in arboreal snakes and weakest in burrowing snakes. Some snakes, such as the Asian vine snake (genus Ahaetulla), have binocular vision, with both eyes capable of focusing on the same point. Most snakes focus by moving the lens back and forth in relation to the retina, while in the other amniote groups, the lens is stretched.
Snakes use smell to track their prey. They smell by using their forked tongues to collect airborne particles, then passing them to the vomeronasal organ or Jacobson's organ in the mouth for examination. The fork in the tongue gives snakes a sort of directional sense of smell and taste simultaneously. They keep their tongues constantly in motion, sampling particles from the air, ground, and water, analyzing the chemicals found, and determining the presence of prey or predators in the local environment. In water-dwelling snakes, such as the Anaconda, the tongue functions efficiently under water.
Thermographic image of a snake eating a mouse
Vibration sensitivity
The part of the body in direct contact with the ground is very sensitive to vibration; thus, a snake can sense other animals approaching by detecting faint vibrations in the air and on the ground.
Infrared sensitivity
Pit vipers, pythons, and some boas have infrared-sensitive receptors in deep grooves between the nostril and eye, although some have labial pits on their upper lip just below the nostrils (common in pythons), which allow them to "see" the radiated heat of warm-blooded prey mammals.


Milk snakes are often mistaken for coral snakes, whose venom is deadly to humans.

Cobras, vipers, and closely related species use venom to immobilize or kill their prey. The venom is modified saliva, delivered through fangs.:243 The fangs of 'advanced' venomous snakes like viperids and elapids are hollow to inject venom more effectively, while the fangs of rear-fanged snakes such as the boomslang merely have a groove on the posterior edge to channel venom into the wound. Snake venoms are often prey specific—their role in self-defense is secondary.:243

Venom, like all salivary secretions, is a predigestant that initiates the breakdown of food into soluble compounds, facilitating proper digestion. Even nonvenomous snake bites (like any animal bite) will cause tissue damage.:209

Certain birds, mammals, and other snakes (such as kingsnakes) that prey on venomous snakes have developed resistance and even immunity to certain venoms.:243 Venomous snakes include three families of snakes, and do not constitute a formal classification group used in taxonomy.

The term poisonous snake is mostly incorrect. Poison is inhaled or ingested, whereas venom is injected. There are, however, two exceptions: Rhabdophis sequesters toxins from the toads it eats, then secretes them from nuchal glands to ward off predators, and a small population of garter snakes in Oregon retains enough toxin in their liver from the newts they eat to be effectively poisonous to small local predators (such as crows and foxes).

Snake venoms are complex mixtures of proteins, and are stored in poison glands at the back of the head. In all venomous snakes, these glands open through ducts into grooved or hollow teeth in the upper jaw.:243 These proteins can potentially be a mix of neurotoxins (which attack the nervous system), hemotoxins (which attack the circulatory system), cytotoxins, bungarotoxins and many other toxins that affect the body in different ways. Almost all snake venom contains hyaluronidase, an enzyme that ensures rapid diffusion of the venom.:243

Venomous snakes that use hemotoxins usually have fangs in the front of their mouths, making it easier for them to inject the venom into their victims. Some snakes that use neurotoxins (such as the mangrove snake) have fangs in the back of their mouths, with the fangs curled backwards. This makes it both difficult for the snake to use its venom and for scientists to milk them. Elapids, however, such as cobras and kraits are proteroglyphous—they possess hollow fangs that cannot be erected toward the front of their mouths, and cannot "stab" like a viper. They must actually bite the victim.:242

It has recently been suggested that all snakes may be venomous to a certain degree, with harmless snakes having weak venom and no fangs. Most snakes currently labelled “nonvenomous” would still be considered harmless according to this theory, as they either lack a venom delivery method or are incapable of delivering enough to endanger a human. This theory postulates that snakes may have evolved from a common lizard ancestor that was venomous—and that venomous lizards like the gila monster, beaded lizard, monitor lizards, and the now-extinct mosasaurs may also have derived. They share this venom clade with various other saurian species.

Venomous snakes are classified in two taxonomic families:

  • Elapids – cobras including king cobras, kraits, mambas, Australian copperheads, sea snakes, and coral snakes.
  • Viperids – vipers, rattlesnakes, copperheads/cottonmouths, and bushmasters.

There is a third family containing the opistoglyphous (rear-fanged) snakes (as well as the majority of other snake species):

Colubrids – boomslangs, tree snakes, vine snakes, mangrove snakes, although not all colubrids are venomous.