Home | Menu | Poem | Jokes | Games | Biography | Omss বাংলা | Celibrity Video | Dictionary

World Population Day

Laser As Weapons

Laser beams are famously employed as weapon systems in science fiction, but actual laser weapons are still in the experimental stage. The general idea of laser-beam weaponry is to hit a target with a train of brief pulses of light. The rapid evaporation and expansion of the surface causes shockwaves that damage the target. The power needed to project a high-powered laser beam of this kind is beyond the limit of current mobile power technology thus favoring chemically powered gas dynamic lasers.

Lasers of all but the lowest powers can potentially be used as incapacitating weapons, through their ability to produce temporary or permanent vision loss in varying degrees when aimed at the eyes. The degree, character, and duration of vision impairment caused by eye exposure to laser light varies with the power of the laser, the wavelength(s), the collimation of the beam, the exact orientation of the beam, and the duration of exposure. Lasers of even a fraction of a watt in power can produce immediate, permanent vision loss under certain conditions, making such lasers potential non-lethal but incapacitating weapons. The extreme handicap that laser-induced blindness represents makes the use of lasers even as non-lethal weapons morally controversial, and weapons designed to cause blindness have been banned by the Protocol on Blinding Laser Weapons. The U.S. Air Force is currently working on the YAL-1 airborne laser, mounted in a Boeing 747, to shoot down enemy ballistic missiles over enemy territory.

In the field of aviation, the hazards of exposure to ground-based lasers deliberately aimed at pilots have grown to the extent that aviation authorities have special procedures to deal with such hazards.

On March 18, 2009 Northrop Grumman claimed that its engineers in Redondo Beach had successfully built and tested an electrically powered solid state laser capable of producing a 100-kilowatt beam, powerful enough to destroy an airplane or a tank. According to Brian Strickland, manager for the United States Army's Joint High Power Solid State Laser program, an electrically powered laser is capable of being mounted in an aircraft, ship, or other vehicle because it requires much less space for its supporting equipment than a chemical laser. However the source of such a large electrical power in a mobile application remains unclear.

Fictional predictions

Several novelists described devices similar to lasers, prior to the discovery of stimulated emission:

  • A laser-like device was described in Alexey Tolstoy's science fiction novel The Hyperboloid of Engineer Garin in 1927.
  • Mikhail Bulgakov exaggerated the biological effect (laser bio stimulation) of intensive red light in his science fiction novel Fatal Eggs (1925), without any reasonable description of the source of this red light. (In that novel, the red light first appears occasionally from the illuminating system of an advanced microscope; then the protagonist Prof. Persikov arranges the special set-up for generation of the red light.)

Fiber Optics for Communications of laser

This section discusses fiber optic communication systems. It does not refer to fiber optic power delivery systems.

Fiber optic laser safety is characterized by the fact that in normal operation the light beam is inaccessible, so something has to be unplugged or broken for it to be become accessible. The resultant exit beam is quite divergent, so eye safety is highly dependent on distance, and if a magnifying device is used.

In practice, accidental exposure to the large majority of installed systems, is unlikely to have any health impact, since power levels are usually infra-red and below 1 mW, e.g. Class 1. However there are a few significant exceptions.

Most single mode / multi mode fiber systems actually use infra-red light, invisible to the human eye. In this case, there is no 'eye aversion response". A special case is systems operating at 670–1000 nm, where the beam may appear to be a dull red, even if the light beam is actually very intense. Technicians may also use red lasers for fault finding at around 628–670 nm. These can create a significant hazard if viewed incorrectly, particularly if they are abnormally high power. Such visible fault finders are usually classified as Class 2 up to 1 mW, and Class 2M up to 10 mW.

High power optical amplifiers are used in long distance systems. They use internal pump lasers with power levels up a few watts, which is a major hazard. However these power levels are contained within the amplifier module. Any system employing typical optical connectors (e.g. not expanded beam) can not typically exceed about 100 mW, above which power level single mode connectors become unreliable, so if there is a single mode connector in the system, the design power level will always be below this level, even if no other details are known. An additional factor with these systems, is that light around the 1550 nm wavelength band (common for optical amplifiers) is regarded as relatively low risk, since the eye does not absorb it very much. This tends to reduce the overall risk factor of such systems.

Optical microscopes and magnifying devices also present unique safety challenges. If any optical power is present, and a simple magnifying device is used to examine the fiber end, then the user is no longer protected by beam divergence, since the entire beam may be imaged onto the eye. Therefore, simple magnifying devices should never be used in such situations. Optical connector inspection microscopes are available which incorporate blocking filters, thus greatly improving eye safety. The most recent such design also incorporates protection against red fault locating lasers.

Non-beam hazards – electrical and other

While most of the danger of lasers comes from the beam itself, there are certain non-beam hazards that are often associated with use of laser systems. Many lasers are high voltage devices, typically 400 V upward for a small 5 mJ pulsed laser, and exceeding many kilovolts in higher powered lasers. This, coupled with high pressure water for cooling the laser and other associated electrical equipment can create a greater hazard than the laser beam itself.

Electric equipment should generally be installed at least 250 mm / 10 inches above the floor to reduce electric risk in the case of flooding. Optical tables, lasers, and other equipment should be well grounded. Enclosure interlocks should be respected and special precautions taken during troubleshooting.

In addition to the electrical hazards, lasers may create chemical, mechanical, and other hazards specific to particular installations. Chemical hazards may include materials intrinsic to the laser, such as beryllium oxide in argon ion laser tubes, halogens in excimer lasers, organic dyes dissolved in toxic or flammable solvents in dye lasers, and heavy metal vapors and asbestos insulation in helium cadmium lasers. They may also include materials released during laser processing, such as metal fumes from cutting or surface treatments of metals or the complex mix of decomposition products produced in the high energy plasma of a laser cutting plastics.

Mechanical hazards may include moving parts in vacuum and pressure pumps; implosion or explosion of flashlamps, plasma tubes, water jackets, and gas handling equipment.

High temperatures and fire hazards may also result from the operation of high-powered Class IIIB or any Class IV Laser.

In commercial laser systems, hazard mitigations such as the presence of fusible plugs, thermal interrupters, and pressure relief valves reduce the hazard of, for example, a steam explosion arising from an obstructed water cooling jacket. Interlocks, shutters, and warning lights are often critical elements of modern commercial installations. In older lasers, experimental and hobby systems, and those removed from other equipment (OEM units) special care must be taken to anticipate and reduce the consequences of misuse as well as various failure modes.

Laser pointers

In the period from 2000 to 2008, increasing attention has been paid to the risks posed by so called laser pointers and laser pens. Typically, sales of laser pointers is restricted to either class 3A (<5 mW) or class 2 (<1 mW), depending on local regulations. For example, in the US and Canada, class 3A is the maximum permitted, unless a key actuated control or other safety features are provided and in the UK and Australia, class 2 is the maximum allowed class. However, because enforcement is often not very strict, laser pointers of class 2 and above are often available for sale even in countries where they are not allowed.

Van Norren et al. (1998) could not find a single example in the medical literature of a <1 mW class III laser causing eyesight damage. Mainster et al. (2003) provide one case, an 11 year old child who temporarily damaged her eyesight by holding an approximately 5 mW red laser pointer close to the eye and staring into the beam for 10 seconds, she experienced scotoma (a blind spot) but fully recovered after 3 months. Luttrulla & Hallisey (1999) describe a similar case, a 34 year old male who stared into the beam of a class IIIa 5mW red laser for 30 to 60 seconds, causing temporary central scotoma and visual field loss. His eyesight fully recovered within 2 days, at the time of his eye exam. An intravenous fundus fluorescein angiogram, a technique used by ophthalmologists to visualise the retina of the eye in fine detail, identified subtle discoloration of the fovea.

Thus, it appears that a brief 0.25-second exposure to a <5 mW laser such as found in red laser pointers does not pose a threat to eye health. On the other hand there is a potential for injury if a person deliberately stares into a beam of a class IIIa laser for few seconds or more at close range. Even if injury occurs, most people will fully recover their vision. Further experienced discomforts than these may be psychological rather than physical. With regard to green laser pointers the safe exposure time may be less, and with even higher powered lasers instant permanent damage should be expected. These conclusions must be qualified with recent theoretical observations that certain prescription medications may interact with some wavelengths of laser light, causing increased sensitivity (phototoxicity).

Beyond the question of physical injury to the eye from a laser pointer, several other undesirable effects are possible. These include short-lived flash blindness if the beam is encountered in darkened surroundings, as when driving at night. This may result in momentary loss of vehicular control. Lasers pointed at aircraft are a hazard to aviation. A police officer seeing a red dot on his chest may conclude that a sniper is targeting him and take aggressive action. In addition, the startle reflex exhibited by some exposed unexpectedly to laser light of this sort has been reported to have resulted in cases of self-injury or loss of control. For these and similar reasons, the US Food and Drug Administration has advised that laser pointers are not toys and should not be used by minors except under the direct supervision of an adult.

International Day against Nuclear Tests

On 2 December 2009, the 64th session of the United Nations General Assembly declared 29 August the International Day against Nuclear Tests by unanimously adopting resolution 64/35

The Day is meant to galvanize the United Nations, Member States, intergovernmental and non-governmental organizations, academic institutions, youth networks and the media to inform, educate and advocate about the necessity of banning nuclear tests as a valuable step towards achieving a safer world. The Preamble of the resolution emphasizes that "every effort should be made to end nuclear tests in order to avert devastating and harmful effects on the lives and health of people" and that "the end of nuclear tests is one of the key means of achieving the goal of a nuclear-weapon-free world.”

UN Secretary-General Ban Ki-moon has stated with great clarity: “A world free of nuclear weapons would be a global public good of the highest order.” In May of 2010, all the States Parties to the Treaty on the Non-proliferation of Nuclear Weapons, committed themselves to work to “achieve the peace and security of a world without nuclear weapons” and they characterized achieving a ban on nuclear testing as “vital.”

The International Day was created as a result of the many recent bilateral and multilateral governmental level developments, of broad movements in civil society, and of the efforts of the UN Secretary-General himself.

Since its establishment, the International Day against Nuclear Tests, together with other events and actions, has helped to create a global environment with more optimistic prospects towards a world free of nuclear weapons. There have been visible signs of progress on various fronts.

2010 marked the inaugural commemoration of the International Day against Nuclear Tests Day. It was observed with various activities throughout the world, such as symposia, conferences, exhibits, competitions, publications, instruction in academic institutions, media broadcasts and others. A number of events were held at United Nations Headquarters, as well. Similar activities are planned for the 2011 observance.

2011, marks the Twentieth Anniversary of the closure of the Semipalatinsk nuclear test site.

Stealth Principles

Stealth technology (or LO for "low observability") is not a single technology. It is a combination of technologies that attempt to greatly reduce the distances at which a person or vehicle can be detected; in particular radar cross section reductions, but also acoustic, thermal, and other aspects:

Radar cross-section (RCS) reductions

Almost since the invention of radar, various methods have been tried to minimize detection. Rapid development of radar during WWII led to equally rapid development of numerous counter radar measures during the period; a notable example of this was the use of chaff.

The term "stealth" in reference to reduced radar signature aircraft became popular during the late eighties when the Lockheed Martin F-117 stealth fighter became widely known. The first large scale (and public) use of the F-117 was during the Gulf War in 1991. However, F-117A stealth fighters were used for the first time in combat during Operation Just Cause, the United States invasion of Panama in 1989. Increased awareness of stealth vehicles and the technologies behind them is prompting the development of means to detect stealth vehicles, such as passive radar arrays and low-frequency radars. Many countries nevertheless continue to develop low-RCS vehicles because they offer advantages in detection range reduction and amplify the effectiveness of on-board systems against active radar guidance threats.

Vehicle shape

The F-35 Lightning II offers better stealthy features (such as this landing gear door) than prior American fighters, such as the F-16 Fighting Falcon

The possibility of designing aircraft in such a manner as to reduce their radar cross-section was recognized in the late 1930s, when the first radar tracking systems were employed, and it has been known since at least the 1960s that aircraft shape makes a significant difference in detectability. The Avro Vulcan, a British bomber of the 1960s, had a remarkably small appearance on radar despite its large size, and occasionally disappeared from radar screens entirely. It is now known that it had a fortuitously stealthy shape apart from the vertical element of the tail. In contrast, the Tupolev 95 Russian long range bomber (NATO reporting name 'Bear') appeared especially well on radar. It is now known that propellers and jet turbine blades produce a bright radar image[citation needed]; the Bear had four pairs of large (5.6 meter diameter) contra-rotating propellers.

Another important factor is internal construction. Some stealth aircraft have skin that is radar transparent or absorbing, behind which are structures termed re-entrant triangles. Radar waves penetrating the skin get trapped in these structures, reflecting off the internal faces and losing energy. This method was first used on the Blackbird series (A-12 / YF-12A / SR-71).

The most efficient way to reflect radar waves back to the emitting radar is with orthogonal metal plates, forming a corner reflector consisting of either a dihedral (two plates) or a trihedral (three orthogonal plates). This configuration occurs in the tail of a conventional aircraft, where the vertical and horizontal components of the tail are set at right angles. Stealth aircraft such as the F-117 use a different arrangement, tilting the tail surfaces to reduce corner reflections formed between them. A more radical method is to eliminate the tail completely, as in the B-2 Spirit.

In addition to altering the tail, stealth design must bury the engines within the wing or fuselage, or in some cases where stealth is applied to an extant aircraft, install baffles in the air intakes, so that the turbine blades are not visible to radar. A stealthy shape must be devoid of complex bumps or protrusions of any kind; meaning that weapons, fuel tanks, and other stores must not be carried externally. Any stealthy vehicle becomes un-stealthy when a door or hatch opens.

Planform alignment is also often used in stealth designs. Planform alignment involves using a small number of surface orientations in the shape of the structure. For example, on the F-22A Raptor, the leading edges of the wing and the tail surfaces are set at the same angle. Careful inspection shows that many small structures, such as the air intake bypass doors and the air refueling aperture, also use the same angles. The effect of planform alignment is to return a radar signal in a very specific direction away from the radar emitter rather than returning a diffuse signal detectable at many angles.

Stealth airframes sometimes display distinctive serrations on some exposed edges, such as the engine ports. The YF-23 has such serrations on the exhaust ports. This is another example in the use of re-entrant triangles and planform alignment, this time on the external airframe.

Shaping requirements have strong negative influence on the aircraft's aerodynamic properties. The F-117 has poor aerodynamics, is inherently unstable, and cannot be flown without a fly-by-wire control system.

K32 HMS Helsingborg, a stealth ship

Ships have also adopted similar methods. The Skjold class patrol boat was the first stealth ship to enter service, though the earlier Arleigh Burke class destroyer incorporated some signature-reduction features. Other examples are the French La Fayette class frigate, the German Sachsen class frigates, the Swedish Visby class corvette, the USS San Antonio amphibious transport dock, and most modern warship designs.

Similarly, coating the cockpit canopy with a thin film transparent conductor (vapor-deposited gold or indium tin oxide) helps to reduce the aircraft's radar profile, because radar waves would normally enter the cockpit, reflect off objects (the inside of a cockpit has a complex shape, with a pilot helmet alone forming a sizeable return), and possibly return to the radar, but the conductive coating creates a controlled shape that deflects the incoming radar waves away from the radar. The coating is thin enough that it has no adverse effect on pilot vision.

Non-metallic airframe

Dielectric composites are more transparent to radar, whereas electrically conductive materials such as metals and carbon fibers reflect electromagnetic energy incident on the material's surface. Composites may also contain ferrites to optimize the dielectric and magnetic properties of a material for its application.

Radar-absorbing material

Radar-absorbent material (RAM), often as paints, are used especially on the edges of metal surfaces. While the material and thickness of RAM coatings is classified, the material seeks to absorb radiated energy from a ground or air based radar station into the coating and convert it to heat rather than reflect it back.

Radar stealth countermeasures and limits

Low-frequency radar

Shaping offers far fewer stealth advantages against low-frequency radar. If the radar wavelength is roughly twice the size of the target, a half-wave resonance effect can still generate a significant return. However, low-frequency radar is limited by lack of available frequencies-many are heavily used by other systems, by lack of accuracy of the diffraction-limited systems given their long wavelengths, and by the radar's size, making it difficult to transport. A long-wave radar may detect a target and roughly locate it, but not provide enough information to identify it, target it with weapons, or even to guide a fighter to it. Noise poses another problem, but that can be efficiently addressed using modern computer technology; Chinese "Nantsin" radar and many older Soviet-made long-range radars were modified this way. It has been said that "there's nothing invisible in the radar frequency range below 2 GHz".

Multiple emitters

Much of the stealth comes from reflecting radar emissions in directions different than a direct return. Thus, detection can be better achieved if emitters are separate from receivers. One emitter separate from one receiver is termed bistatic radar; one or more emitters separate from more than one receiver is multitatic. Proposals exist to use reflections from emitters such as civilian radio transmitters, including cellular telephone radio towers.

Moore's law

By Moore's law the processing power behind radar systems is rising over time. This will erode the ability of physical stealth to hide vehicles.

Ship's wakes and spray

Synthetic Aperture sidescan radars can be used to detect the location and heading of ships from their wake patterns. These may be detectable from orbit. When a ship moves through a seaway it throws up a cloud of spray which can be detected by radar.


Acoustic stealth plays a primary role in submarine stealth as well as for ground vehicles. Submarines use extensive rubber mountings to isolate and avoid mechanical noises that could reveal locations to underwater passive sonar arrays.

Early stealth observation aircraft used slow-turning propellers to avoid being heard by enemy troops below. Stealth aircraft that stay subsonic can avoid being tracked by sonic boom. The presence of supersonic and jet-powered stealth aircraft such as the SR-71 Blackbird indicates that acoustic signature is not always a major driver in aircraft design, although the Blackbird relied more on its extremely high speed and altitude.


The simplest stealth technology is simply camouflage; the use of paint or other materials to color and break up the lines of the vehicle or person.

Most stealth aircraft use matte paint and dark colors, and operate only at night. Lately, interest in daylight Stealth (especially by the USAF) has emphasized the use of gray paint in disruptive schemes, and it is assumed that Yehudi lights could be used in the future to mask shadows in the airframe (in daylight, against the clear background of the sky, dark tones are easier to detect than light ones) or as a sort of active camouflage. The original B-2 design had wing tanks for a contrail-inhibiting chemical, alleged by some to be chlorofluorosulfonic acid, but this was replaced in the final design with a contrail sensor from Ophir that alerts the pilot when he should change altitude and mission planning also considers altitudes where the probability of their formation is minimized.


An exhaust plume contributes a significant infrared signature. One means to reduce IR signature is to have a non-circular tail pipe (a slit shape) to minimize the exhaust cross-sectional volume and maximize the mixing of hot exhaust with cool ambient air. Often, cool air is deliberately injected into the exhaust flow to boost this process. Sometimes, the jet exhaust is vented above the wing surface to shield it from observers below, as in the B-2 Spirit, and the unstealthy A-10 Thunderbolt II. To achieve infrared stealth, the exhaust gas is cooled to the temperatures where the brightest wavelengths it radiates are absorbed by atmospheric carbon dioxide and water vapor, dramatically reducing the infrared visibility of the exhaust plume. Another way to reduce the exhaust temperature is to circulate coolant fluids such as fuel inside the exhaust pipe, where the fuel tanks serve as heat sinks cooled by the flow of air along the wings.[citation needed]

Ground combat includes the use of both active and passive infrared sensors and so the USMC ground combat uniform requirements document specifies infrared reflective quality standards.

Reducing radio frequency (RF) emissions

In addition to reducing infrared and acoustic emissions, a stealth vehicle must avoid radiating any other detectable energy, such as from onboard radars, communications systems, or RF leakage from electronics enclosures. The F-117 uses passive infrared and low light level television sensor systems to aim its weapons and the F-22 Raptor has an advanced LPI radar which can illuminate enemy aircraft without triggering a radar warning receiver response.


The size of a target's image on radar is measured by the radar cross section or RCS, often represented by the symbol σ and expressed in square meters. This does not equal geometric area. A perfectly conducting sphere of projected cross sectional area 1 m2 (i.e. a diameter of 1.13 m) will have an RCS of 1 m2. Note that for radar wavelengths much less than the diameter of the sphere, RCS is independent of frequency. Conversely, a square flat plate of area 1 m2 will have an RCS of σ = 4π A2 / λ2 (where A=area, λ=wavelength), or 13,982 m2 at 10 GHz if the radar is perpendicular to the flat surface. At off-normal incident angles, energy is reflected away from the receiver, reducing the RCS. Modern stealth aircraft are said to have an RCS comparable with small birds or large insects, though this varies widely depending on aircraft and radar.

If the RCS was directly related to the target's cross-sectional area, the only way to reduce it would be to make the physical profile smaller. Rather, by reflecting much of the radiation away or by absorbing it, the target achieves a smaller radar cross section.


Stealthy strike aircraft such as the F-117, designed by Lockheed Martin's famous Skunk Works, are usually used against heavily defended enemy sites such as Command and Control centers or surface-to-air missile (SAM) batteries. Enemy radar will cover the airspace around these sites with overlapping coverage, making undetected entry by conventional aircraft nearly impossible. Stealthy aircraft can also be detected, but only at short ranges around the radars, so that for a stealthy aircraft there are substantial gaps in the radar coverage. Thus a stealthy aircraft flying an appropriate route can remain undetected by radar. Many ground-based radars exploit Doppler filter to improve sensitivity to objects having a radial velocity component with respect to the radar. Mission planners use their knowledge of enemy radar locations and the RCS pattern of the aircraft to design a flight path that minimizes radial speed while presenting the lowest-RCS aspects of the aircraft to the threat radar. To be able to fly these "safe" routes, it is necessary to understand an enemy's radar coverage (see Electronic Intelligence). Airborne or mobile radar systems such as AWACS can complicate tactical strategy for stealth operation.


Negative index metamaterials are artificial structures which refractive index has a negative value for some frequency range, such as in microwave, infrared, or possibly optical. These offer another way to reduce detectability, and may provide electromagnetic near-invisibility in designed wavelengths.

Plasma stealth is a phenomenon proposed to use ionized gas (plasma) to reduce RCS of vehicles. Interactions between electromagnetic radiation and ionized gas have been studied extensively for many purposes, including concealing vehicles from radar. Various methods might form a layer or cloud of plasma around a vehicle to deflect or absorb radar, from simpler electrostatic to RF more complex laser discharges, but these may be difficult in practice.

Several technology research and development efforts exist to integrate the functions of aircraft flight control systems such as ailerons, elevators, elevons, flaps, and flaperons into wings to perform the aerodynamic purpose with the advantages of lower RCS for stealth via simpler geometries and lower complexity (mechanically simpler, fewer or no moving parts or surfaces, less maintenance), and lower mass, cost (up to 50% less), drag (up to 15% less during use) and, inertia (for faster, stronger control response to change vehicle orientation to reduce detection). Two promising approaches are flexible wings, and fluidics.

In flexible wings, much or all of a wing surface can change shape in flight to deflect air flow. The X-53 Active Aeroelastic Wing is a NASA effort. The Adaptive Compliant Wing is a military and commercial effort.

In fluidics, fluid injection is being researched for use in aircraft to control direction, in two ways: circulation control and thrust vectoring. In both, larger more complex mechanical parts are replaced by smaller, simpler fluidic systems, in which larger forces in fluids are diverted by smaller jets or flows of fluid intermittently, to change the direction of vehicles.

In circulation control, near the trailing edges of wings, aircraft flight control systems are replaced by slots which emit fluid flows.

In thrust vectoring, in jet engine nozzles, swiveling parts are replaced by slots which inject fluid flows into jets to divert thrust. Tests show that air forced into a jet engine exhaust stream can deflect thrust up to 15 degrees. The U.S. FAA has conducted a study about civilizing 3D military thrust vectoring to help jetliners avoid crashes. According to this study, 65% of all air crashes can be prevented by deploying thrust vectoring means.

Safety measures of laser

General precautions

Many scientists involved with lasers agree on the following guidelines:

  • Everyone who uses a laser should be aware of the risks. This awareness is not just a matter of time spent with lasers; to the contrary, long-term dealing with invisible risks (such as from infrared laser beams) tends to reduce risk awareness, rather than to sharpen it.
  • Optical experiments should be carried out on an optical table with all laser beams travelling in the horizontal plane only, and all beams should be stopped at the edges of the table. Users should never put their eyes at the level of the horizontal plane where the beams are in case of reflected beams that leave the table.
  • Watches and other jewelry that might enter the optical plane should not be allowed in the laboratory. All non-optical objects that are close to the optical plane should have a matte finish in order to prevent specular reflections.
  • Adequate eye protection should always be required for everyone in the room if there is a significant risk for eye injury.
  • High-intensity beams that can cause fire or skin damage (mainly from class 4 and ultraviolet lasers) and that are not frequently modified should be guided through tubes.
  • Alignment of beams and optical components should be performed at a reduced beam power whenever possible.

Protective eyewear

Laser goggles

The use of eye protection when operating lasers of classes 3B and 4 in a manner that may result in eye exposure in excess of the MPE is required in the workplace by the U.S. Occupational Safety and Health Administration.

Protective eyewear in the form of spectacles or goggles with appropriately filtering optics can protect the eyes from the reflected or scattered laser light with a hazardous beam power, as well as from direct exposure to a laser beam. Eyewear must be selected for the specific type of laser, to block or attenuate in the appropriate wavelength range. For example, eyewear absorbing 532 nm typically has an orange appearance, transmitting wavelengths larger than 550 nm. Such eyewear would be useless as protection against a laser emitting at 800 nm. Furthermore, some lasers emit more than one wavelength of light, and this may be a particular problem with some less expensive frequency-doubled lasers, such as 532 nm "green laser pointers" which are commonly pumped by 808 nm infrared laser diodes, and also generate an intermediate 1064 nm laser beam which is used to produce the final 532 nm output. If the IR radiation is allowed into the beam, which happens in some green laser pointers, it will in general not be blocked by regular red or orange colored protective eyewear designed for pure green or already IR-filtered beam. Special YAG laser and dual-frequency eyewear is available for work with frequency-doubled YAG and other IR lasers which have a visible beam, but it is more expensive, and IR-pumped green laser products do not always specify whether such extra protection is needed.

Eyewear is rated for optical density (OD), which is the base-10 logarithm of the attenuation factor by which the optical filter reduces beam power. For example, eyewear with OD 3 will reduce the beam power in the specified wavelength range by a factor of 1,000. In addition to an optical density sufficient to reduce beam power to below the maximum permissible exposure (see above), laser eyewear used where direct beam exposure is possible should be able to withstand a direct hit from the laser beam without breaking. The protective specifications (wavelengths and optical densities) are usually printed on the goggles, generally near the top of the unit. In the European Community, manufacturers are required by European norm EN 207 to specify the maximum power rating rather than the optical density.

Interlocks and automatic shutdown

Interlocks are circuits that shut down a laser if some condition is not met, such as if the laser casing or a room door is open. Class 3B and 4 lasers typically provide a connection for an external interlock circuit. Lasers that are class 1 only because the light is contained within an enclosure nearly always have an interlock that disables the laser if that enclosure is opened.

Some systems have electronics that automatically shut down the laser under other conditions. For example, some fiber optic communication systems have circuits that automatically shut down transmission if a fiber is disconnected or broken.

Laser safety officer

In many jurisdictions, organizations that operate lasers are required to appoint a laser safety officer (LSO). The LSO is responsible for ensuring that safety regulations are followed by all other workers in the organization.

Stealth History

In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours (common in the 16th century Irish units) as a form of camouflage, following examples from the continent.

Yehudi lights were successfully employed in World War II by RAF Shorts Sunderland aircraft in attacks on U-boats. In 1945 a Grumman Avenger with Yehudi lights got within 3,000 yards (2,700 m) of a ship before being sighted. This ability was rendered obsolete by the radar of the time.

The U-boat U-480 may have been the first stealth submarine. It featured a rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar.

One of the earliest stealth aircraft seems to have been the Horten Ho 229 flying wing. It included carbon powder in the glue to absorb radio waves. Some prototypes were built, but it was never used in action.

In 1958, the CIA requested funding for a reconnaissance aircraft, to replace U-2 spy planes in which Lockheed secured contractual rights to produce the aircraft. "Kelly" Johnson and his team at Lockheed's Skunk Works were assigned to produce the A-12 or OXCART the first of the former top secret classified Blackbird series which operated at high altitude of 70,000 to 80,000 ft and speed of Mach 3.2 to avoid radar detection. Radar absorbent material had already been introduced on U-2 spy planes, and various plane shapes had been developed in earlier prototypes named A1 to A11 to reduce its detection from radar. Later in 1964, using prior models, an optimal plane shape taking into account compactness was developed where another "Blackbird", the SR-71, was produced, surpassing prior models in both altitude of 90,000 ft and speed of Mach 3.3.

During 1970s, the U.S. Department of Defence then launched a project called Have Blue to develop a stealth fighter. Bidding between both Lockheed and Northrop for the tender was fierce to secure the multi-billion dollar contract. Lockheed incorporated in its program paper written by a Soviet/Russian physicist Pyotr Ufimtsev in 1962 titled Method of Edge Waves in the Physical Theory of Diffraction, Soviet Radio, Moscow, 1962. In 1971 this book was translated into English with the same title by U.S. Air Force, Foreign Technology Division (National Air Intelligence Center ), Wright-Patterson AFB, OH, 1971. Technical Report AD 733203, Defense Technical Information Center of USA, Cameron Station, Alexandria, VA, 22304-6145, USA. This theory played a critical role in the design of American stealth-aircraft F-117 and B-2. The paper was able to find whether a plane's shape design would minimise its detection by radar or its radar cross-section (RCS) using a series of equations could be used to evaluate the radar cross section of any shape. Lockheed used it to design a shape they called the Hopeless Diamond, securing contractual rights to mass produce the F-117 Nighthawk.

The F-117 project began with a model called "The Hopeless Diamond" (a wordplay on the Hope Diamond) in 1975 due to its bizarre appearance. In 1977 Lockheed produced two 60% scale models under the Have Blue contract. The Have Blue program was a stealth technology demonstrator that lasted from 1976 to 1979. The success of Have Blue lead the Air Force to create the Senior Trend program which developed the F-117.

Maximum permissible exposure of laser

Maximum permissible exposure (MPE) at the cornea for a collimated laser beam according to IEC 60825, as energy density versus exposure time for various wavelengths.

The maximum permissible exposure (MPE) is the highest power or energy density (in W/cm2 or J/cm2) of a light source that is considered safe, i.e. that has a negligible probability for creating damage. It is usually about 10% of the dose that has a 50% chance of creating damage under worst-case conditions. The MPE is measured at the cornea of the human eye or at the skin, for a given wavelength and exposure time.

MPE as power density versus exposure time for various wavelengths.

A calculation of the MPE for ocular exposure takes into account the various ways light can act upon the eye. For example, deep-ultraviolet light causes accumulating damage, even at very low powers. Infrared light with a wavelength longer than about 1400 nm is absorbed by the transparent parts of the eye before it reaches the retina, which means that the MPE for these wavelengths is higher than for visible light. In addition to the wavelength and exposure time, the MPE takes into account the spatial distribution of the light (from a laser or otherwise). Collimated laser beams of visible and near-infrared light are especially dangerous at relatively low powers because the lens focuses the light onto a tiny spot on the retina. Light sources with a smaller degree of spatial coherence than a well-collimated laser beam, such as high-power LEDs, lead to a distribution of the light over a larger area on the retina. For such sources, the MPE is higher than for collimated laser beams. In the MPE calculation, the worst-case scenario is assumed, in which the eye lens focuses the light into the smallest possible spot size on the retina for the particular wavelength and the pupil is fully open. Although the MPE is specified as power or energy per unit surface, it is based on the power or energy that can pass through a fully open pupil (0.39 cm2) for visible and near-infrared wavelengths. This is relevant for laser beams that have a cross-section smaller than 0.39 cm2. The IEC-60825-1 and ANSI Z136.1 standards include methods of calculating MPEs.

MPE as energy density versus wavelength for various exposure times (pulse durations).

Stealth technology and introduction

F-117 stealth attack plane

Stealth technology also termed LO technology (low observable technology) is a sub-discipline of military tactics and passive electronic countermeasures, which cover a range of techniques used with personnel, aircraft, ships, submarines, and missiles, to make them less visible (ideally invisible) to radar, infrared, sonar and other detection methods.

Development in the United States occurred in 1958, where earlier attempts in preventing radar tracking of its U-2 spy planes during the Cold War by the Soviet Union had been unsuccessful. Designers turned to develop a particular shape for planes that tended to reduce detection, by redirecting electromagnetic waves from radars. Radar-absorbent material was also tested and made to reduce or block radar signals that reflect off from the surface of planes. Such changes to shape and surface composition form stealth technology as currently used on the Northrop Grumman B-2 Spirit "Stealth Bomber". The concept of stealth is to operate or hide without giving enemy forces any indications as to the presence of friendly forces. This concept was first explored through camouflage by blending into the background visual clutter. As the potency of detection and interception technologies (radar, IRST, surface-to-air missiles etc.) have increased over time, so too has the extent to which the design and operation of military personnel and vehicles have been affected in response. Some military uniforms are treated with chemicals to reduce their infrared signature. A modern "stealth" vehicle will generally have been designed from the outset to have reduced or controlled signature. Varying degrees of stealth can be achieved. The exact level and nature of stealth embodied in a particular design is determined by the prediction of likely threat capabilities.

Women's Equality Day

Women's Equality Day is a day proclaimed each year by the United States President to commemorate the giving of the vote to women throughout the country on an equal basis to men.

Women in the United States were given the right to vote on August 26, 1920, when the 19th Amendment to the United States Constitution was certified. The amendment was first introduced many years earlier in 1878. Every president has published a proclamation for Women's Equality Day since 1971 when legislation was first introduced in Congress by Bella Abzug. This resolution was passed designating August 26 of each year as Women's Equality Day.

Full text of resolution

Joint Resolution of Congress, 1971 Designating August 26th of each year as Women's Equality Day

WHEREAS, the women of the United States have been treated as second-class citizens and have not been entitled the full rights and privileges, public or private, legal or institutional, which are available to male citizens of the United States; and
WHEREAS, the women of the United States have united to assure that these rights and privileges are available to all citizens equally regardless of sex;
WHEREAS, the women of the United States have designated August 26th, the anniversary date of the passage of the Nineteenth Amendment, as symbol of the continued fight for equal rights: and
WHEREAS, the women of United States are to be commended and supported in their organizations and activities,
NOW, THEREFORE, BE IT RESOLVED, the Senate and House of Representatives of the United States of America in Congress assembled, that August 26th of each year is designated as "Women's Equality Day," and the President is authorized and requested to issue a proclamation annually in commemoration of that day in 1920, on which the women of America were first given the right to vote, and that day in 1970, on which a nationwide demonstration for women's rights took place.

Laser radiation hazards

Laser radiation predominantly causes injury via thermal effects. Even moderately powered lasers can cause injury to the eye. High power lasers can also burn the skin. Some lasers are so powerful that even the diffuse reflection from a surface can be hazardous to the eye.

Diagram of a human eye.

The coherence, the low divergence angle of laser light and the focusing mechanism of the eye means that laser light can be concentrated into an extremely small spot on the retina. A transient increase of only 10 °C can destroy retinal photoreceptor cells. If the laser is sufficiently powerful, permanent damage can occur within a fraction of a second, literally faster than the blink of an eye. Sufficiently powerful in the visible to near infrared laser radiation (400-1400 nm) will penetrate the eyeball and may cause heating of the retina, whereas exposure to laser radiation with wavelengths less than 400 nm and greater than 1400 nm are largely absorbed by the cornea and lens, leading to the development of cataracts or burn injuries.

Infrared lasers are particularly hazardous, since the body's protective "blink reflex" response is triggered only by visible light. For example, some people exposed to high power Nd:YAG laser emitting invisible 1064 nm radiation, may not feel pain or notice immediate damage to their eyesight. A pop or click noise emanating from the eyeball may be the only indication that retinal damage has occurred i.e. the retina was heated to over 100 °C resulting in localized explosive boiling accompanied by the immediate creation of a permanent blind spot.

Damage mechanisms

Lasers can cause damage in biological tissues, both to the eye and to the skin, due to several mechanisms. Thermal damage, or burn, occurs when tissues are heated to the point where denaturation of proteins occurs. Another mechanism is photochemical damage, where light triggers chemical reactions in tissue. Photochemical damage occurs mostly with short-wavelength (blue) and ultra-violet light and can be accumulated over the course of hours. Laser pulses shorter than about 1 μs can cause a rapid rise in temperature, resulting in explosive boiling of water. The shock wave from the explosion can subsequently cause damage relatively far away from the point of impact. Ultrashort pulses can also exhibit self-focusing in the transparent parts of the eye, leading to an increase of the damage potential compared to longer pulses with the same energy.

The eye focuses visible and near-infrared light onto the retina. A laser beam can be focused to an intensity on the retina which may be up to 200,000 times higher than at the point where the laser beam enters the eye. Most of the light is absorbed by melanin pigments in the pigment epithelium just behind the photoreceptors, and causes burns in the retina. Ultraviolet light with wavelengths shorter than 400 nm tends to be absorbed in the cornea and lens, where it can produce injuries at relatively low powers due to photochemical damage. Infrared light mainly causes thermal damage to the retina at near-infrared wavelengths and to more frontal parts of the eye at longer wavelengths. The table below summarizes the various medical conditions caused by lasers at different wavelengths, not including injuries due to pulsed lasers.

Wavelength range Pathological effect
180–315 nm (UV-B, UV-C) photokeratitis (inflammation of the cornea, equivalent to sunburn)
315–400 nm (UV-A) photochemical cataract (clouding of the eye lens)
400–780 nm (visible) photochemical damage to the retina, retinal burn
780–1400 nm (near-IR) cataract, retinal burn
1.4–3.0μm (IR) aqueous flare (protein in the aqueous humour), cataract, corneal burn
3.0 μm–1 mm corneal burn

The skin is usually much less sensitive to laser light than the eye, but excessive exposure to ultraviolet light from any source (laser or non-laser) can cause short- and long-term effects similar to sunburn, while visible and infrared wavelengths are mainly harmful due to thermal damage.

Lasers and aviation safety

Since November 19, 2004 there have been over 2,800 incidents of lasers directed at aircraft within the United States. These concerns have led to an inquiry in the US Congress. Exposure to hand-held laser light under such circumstances may seem trivial given the brevity of exposure, the large distances involved and beam spread of up to several metres. However, laser exposure may create dangerous conditions such as flash blindness. If this occurs during a critical moment in aircraft operation, the aircraft may be endangered. In addition, some 18% to 35% of the population possess the autosomal dominant genetic trait, photic sneeze, that causes the affected individual to experience an involuntary sneezing fit when exposed to a sudden flash of light. Some observers believe that the danger is greatly exaggerated, at least for small hand-held lasers.

Safety From Laser

Warning symbol for lasers.

Even the first laser was recognized as being potentially dangerous. Theodore Maiman characterized the first laser as having a power of one "Gillette" as it could burn through one Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight, when the beam from such a laser hits the eye directly or after reflection from a shiny surface. At wavelengths which the cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the eye into an extremely small spot on the retina, resulting in localized burning and permanent damage in seconds or even less time.

Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:

  • Class I/1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players.
  • Class II/2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers.
  • Class IIIa/3R lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
  • Class IIIb/3B can cause immediate eye damage upon exposure.
  • Class IV/4 lasers can burn skin, and in some cases, even scattered light can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.

The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.

Certain infrared lasers with wavelengths beyond about 1.4 micrometres are often referred to as being "eye-safe". This is because the intrinsic molecular vibrations of water molecules very strongly absorb light in this part of the spectrum, and thus a laser beam at these wavelengths is attenuated so completely as it passes through the eye's cornea that no light remains to be focused by the lens onto the retina. The label "eye-safe" can be misleading, however, as it only applies to relatively low power continuous wave beams; any high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage.

Uses of Laser

Lasers range in size from microscopic diode lasers (top) with numerous applications, to football field sized neodymiumglass lasers (bottom) used for inertial confinement fusion, nuclear weapons research and other high energy density physics experiments.

When lasers were invented in 1960, they were called "a solution looking for a problem". Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military.

The first use of lasers in the daily lives of the general population was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.

Some other uses are:

  • Medicine: Bloodless surgery, laser healing, surgical treatment, kidney stone treatment, eye treatment, dentistry
  • Industry: Cutting, welding, material heat treatment, marking parts, non-contact measurement of parts
  • Military: Marking targets, guiding munitions, missile defence, electro-optical countermeasures (EOCM), alternative to radar, blinding troops.
  • Law enforcement: used for latent fingerprint detection in the forensic identification field[27][28]
  • Research: Spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, LIDAR, laser capture microdissection, fluorescence microscopy
  • Product development/commercial: laser printers, optical discs (e.g. CDs and the like), barcode scanners, thermometers, laser pointers, holograms, bubblegrams.
  • Laser lighting displays: Laser light shows
  • Cosmetic skin treatments: acne treatment, cellulite and striae reduction, and hair removal.

In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion. In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.

Examples by power

Laser application in astronomical adaptive optics imaging

Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the peak power of each pulse. The peak power of a pulsed laser is many orders of magnitude greater than its average power. The average output power is always less than the power consumed.

The continuous or average power required for some uses:
Power Use
1-5 mW Laser pointers
5 mW CD-ROM drive
5–10 mW DVD player or DVD-ROM drive
100 mW High-speed CD-RW burner
250 mW Consumer 16x DVD-R burner
400 mW Burning through a jewel case including disk within 4 seconds
DVD 24x dual-layer recording.
1 W Green laser in current Holographic Versatile Disc prototype development
1–20 W Output of the majority of commercially available solid-state lasers used for micro machining
30–100 W Typical sealed CO2 surgical lasers
100–3000 W Typical sealed CO2 lasers used in industrial laser cutting
5 kW Output power achieved by a 1 cm diode laser bar
100 kW Claimed output of a CO2 laser being developed by Northrop Grumman for military (weapon) applications

Examples of pulsed systems with high peak power:

  • 700 TW (700×1012 W) – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber.
  • 1.3 PW (1.3×1015 W) – world's most powerful laser as of 1998, located at the Lawrence Livermore Laboratory

Hobby uses

In recent years, some hobbyists have taken interests in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb, although some have made their own class IV types. However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red), Blu-ray players (violet), or even higher power laser diodes from CD or DVD burners.

Hobbyists also have been taking surplus pulsed lasers from retired military applications and modifying them for pulsed holography. Pulsed Ruby and pulsed YAG lasers have been used.

International Day for the Remembrance of the Slave Trade and Its Abolition

International Day for the Remembrance of the Slave Trade and its Abolition, August 23 of each year, the day designated by UNESCO to memorialize the transatlantic slave trade. That date was chosen by the UNESCO Executive Board's adoption of resolution 29 C/40 at its 29th session. Circular CL/3494 of July 29, 1998 from the Director-General invited Ministers of Culture to promote the day. The date is significant because, during the night of August 22 to August 23, 1791 on the island of Saint Domingue (now known as Haiti), an uprising began which set forth events which were a major factor in the abolition of the transatlantic slave trade.

UNESCO Member States organize events every year on that date, inviting participation from young people, educators, artists and intellectuals. As part of the goals of the intercultural UNESCO project, "The Slave Route", it is an opportunity for collective recognition and focus on the "historic causes, the methods and the consequences" of slavery. Additionally, it sets the stage for analysis and dialogue of the interactions which gave rise to the transatlantic trade in human beings between Africa, Europe, the Americas and the Caribbean.

The International Day for the Remembrance of the Slave Trade and its Abolition was first celebrated in a number of countries, in particular in Haiti (23 August 1998) and Senegal (23 August 1999). A number of cultural events and debates were organized. In 2001 the Mulhouse Textile Museum in France conducted a fabric workshop entitled "Indiennes de Traite" (a type of calico) used as currency in trade for Africans. The International Slavery Museum opened its doors on August 23, 2007 in Liverpool where Slavery Remembrance Day events have been conducted since 2004.

Erotic furniture and style sex

Erotic furniture, represents any form of furniture that can act as an aid to sexual intercourse. Whilst almost anything can be used for this purpose, the most common form of furniture employed for sex is the bed, but couches and sofas come a close second. These are not strictly erotic furniture, as their primary use is not erotic.

Specifically designed furniture for erotic purposes can include

  • Devices for spanking and flagellation such as the Berkley Horse
  • Sex swings
  • Devices for using gravity to aid in lovemaking without the use of complicated slings.
  • Fisting slings
  • Various types of angled foam wedges or specially designed pillows that support various sex positions. See Liberator shapes for example or the ergonomically based Lovebumpers.
  • Bondage equipment such as stocks and pillories
  • Smotherboxes and other queening stools.
  • the Love Chair, a curious chair made of curved tubular steel, articulated in several ways and designed to facilitate otherwise impossible sexual acts. This device was advertised in men's magazines in the mid-1970s, and is seen in at least one of Nina Hartley's Guide to videos, but it is no longer commercially available.
  • Sawhorses, which are shaped much like the version used for carpentry, but have a sharpened edge and is primarily sat on to achieve a feeling similar to a crotch rope in bondage.

King Edward VII of the United Kingdom, who was heavily overweight, used a specially constructed "love seat" (siege d'amour) when he visited the famous brothel, Le Chabanais in Paris. The piece still exists and is exhibited at the Musée de l'Erotisme in Pigalle.

See also Edward Gorey's The Curious Sofa, (1961), a neo-Victorian pseudo-porno send-up consisting of non-illustrations—there's always a potted palm or something in the way. One caption reads "That evening in the library Scylla, one of the guests who had certain anatomical peculiarities, demonstrated the 'Lithuanian Typewriter', assisted by Ronald and Rupert, two remarkably well-set-up young men from the village." The Curious Sofa of the title is approached with some misgivings by the house-party guests at the end.

Laser Types and operating principles

Wavelengths of commercially available lasers. Laser types with distinct laser lines are shown above the wavelength bar, while below are shown lasers that can emit in a wavelength range. The color codifies the type of laser material (see the figure description for more details).

Gas lasers

Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently. Gas lasers using many different gases have been built and used for many purposes. The helium-neon laser (HeNe) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO2 laser is unusually high: over 10%. Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate deep ultraviolet wavelengths. Helium-silver (HeAg) 224 nm and neon-copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation linewidths, less than 3 GHz (0.5 picometers), making them candidates for use in fluorescence suppressed Raman spectroscopy.

Chemical lasers

Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the Hydrogen fluoride laser (2700-2900 nm) and the Deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of ethylene in nitrogen trifluoride.

Excimer lasers

Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an excimer, or more precisely an exciplex in existing designs. These are molecules which can only exist with one atom in an excited electronic state. Once the molecule transfers its excitation energy to a photon, therefore, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at ultraviolet wavelengths with major applicatons including semiconductor photolithography and LASIK eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm). The molecular fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F2 is a stable compound.

Solid-state lasers

A frequency-doubled green laser pointer, showing internal construction. Two AAA cells and electronics power the laser module (lower diagram) This contains a powerful 808 nm IR diode laser that optically pumps a Nd:YVO4 crystal inside a laser cavity. That laser produces 1064 nm (infrared) light which is mainly confined inside the resonator. Also inside the laser cavity, however, is a non-linear KTP crystal which causes frequency doubling, resulting in green light at 532 nm. The front mirror is transparent to this visible wavelength which is then expanded and collimated using two lenses (in this particular design).

Solid-state lasers use a crystalline or glass rod which is "doped" with ions that provide the required energy states. For example, the first working laser was a ruby laser, made from ruby (chromium-doped corundum). The population inversion is actually maintained in the "dopant", such as chromium or neodymium. These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser.

It should be noted that "solid-state" in this sense refers to a crystal or glass, but this usage is distinct from the designation of "solid-state electronics" in referring to semiconductors. Semiconductor lasers (laser diodes) are pumped electrically and are thus not referred to as solid-state lasers. The class of solid-state lasers would, however, properly include fiber lasers in which dopants in the glass lase under optical pumping. But in practice these are simply referred to as "fiber lasers" with "solid-state" reserved for lasers using a solid rod of such a material.

Laser spots (650, 532, 405 nm)

Neodymium is a common "dopant" in various solid-state laser crystals, including yttrium orthovanadate (Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers.

These lasers are also commonly frequency doubled, tripled or quadrupled, in so-called "diode pumped solid state" or DPSS lasers. Under second, third, or fourth harmonic generation these produce 532 nm (green, visible), 355 nm and 266 nm (Ultraviolet|UV]]) beams. This is the technology behind the bright laser pointers particularly at green (532 nm) and other short visible wavelengths.

Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020-1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.

Titanium-doped sapphire (Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.

Thermal limitations in solid-state lasers arise from unconverted pump power that manifests itself as heat. This heat, when coupled with a high thermo-optic coefficient (dn/dT) can give rise to thermal lensing as well as reduced quantum efficiency. These types of issues can be overcome by another novel diode-pumped solid-state laser, the diode-pumped thin disk laser. The thermal limitations in this laser type are mitigated by using a laser medium geometry in which the thickness is much smaller than the diameter of the pump beam. This allows for a more even thermal gradient in the material. Thin disk lasers have been shown to produce up to kilowatt levels of power.

Fiber lasers

Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.

Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.

Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.

Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.

Photonic crystal lasers

Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the density of optical states (DOS) structure required for the feedback to take place. They are typical micrometre-sized and tunable on the bands of the photonic crystals.

Semiconductor lasers

A 5.6 mm 'closed can' commercial laser diode, probably from a CD or DVD player

Semiconductor lasers are diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.

Commercial laser diodes emit at wavelengths from 375 nm to 1800 nm, and wavelengths of over 3 µm have been demonstrated. Low to medium power laser diodes are used in laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 10 kW (70dBm), are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.

Laser beams (red, green, violet)

Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes, and potentially could be much cheaper to manufacture. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy sub-bands of an electron in a structure containing several quantum wells.

The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.

Dye lasers

Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (on the order of a few femtoseconds). Although these tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form these solid state dye lasers use dye-doped polymers as laser media.

Free electron lasers

Free electron lasers, or FELs, generate coherent, high power radiation, that is widely tunable, currently ranging in wavelength from microwaves, through terahertz radiation and infrared, to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term free electron.

Bio laser

Living cells can be genetically engineered to produce Green fluorescent protein (GFP). The GFP is used as the laser's "gain medium", where light amplification takes place. The cells are then placed between two tiny mirrors, just 20 millionths of a metre across, which acted as the "laser cavity" in which light could bounce many times through the cell. Upon bathing the cell with blue light, it could be seen to emit directed and intense green laser light.

Exotic laser media

In September 2007, the BBC News reported that there was speculation about the possibility of using positronium annihilation to drive a very powerful gamma ray laser. Dr. David Cassidy of the University of California, Riverside proposed that a single such laser could be used to ignite a nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in inertial confinement fusion experiments.

Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons. Such devices would be one-shot weapons.