Home | Menu | Poem | Jokes | Games | Biography | Omss বাংলা | Celibrity Video | Dictionary

World Population Day

Ongoing research about Tornado

Meteorology is a relatively young science and the study of tornadoes is newer still. Although researched for about 140 years and intensively for around 60 years, there are still aspects of tornadoes which remain a mystery. Scientists have a fairly good understanding of the development of thunderstorms and mesocyclones, and the meteorological conditions conducive to their formation. However, the step from supercell (or other respective formative processes) to tornadogenesis and predicting tornadic vs. non-tornadic mesocyclones is not yet well known and is the focus of much research.

A Doppler On Wheels unit observing a tornado near Attica, Kansas

Also under study are the low-level mesocyclone and the stretching of low-level vorticity which tightens into a tornado, namely, what are the processes and what is the relationship of the environment and the convective storm. Intense tornadoes have been observed forming simultaneously with a mesocyclone aloft (rather than succeeding mesocyclogenesis) and some intense tornadoes have occurred without a mid-level mesocyclone. In particular, the role of downdrafts, particularly the rear-flank downdraft, and the role of baroclinic boundaries, are intense areas of study.

Reliably predicting tornado intensity and longevity remains a problem, as do details affecting characteristics of a tornado during its life cycle and tornadolysis. Other rich areas of research are tornadoes associated with mesovortices within linear thunderstorm structures and within tropical cyclones.

Scientists still do not know the exact mechanisms by which most tornadoes form, and occasional tornadoes still strike without a tornado warning being issued. Analysis of observations including both stationary and mobile (surface and aerial) in-situ and remote sensing (passive and active) instruments generates new ideas and refines existing notions. Numerical modeling also provides new insights as observations and new discoveries are integrated into our physical understanding and then tested in computer simulations which validate new notions as well as produce entirely new theoretical findings, many of which are otherwise unattainable. Importantly, development of new observation technologies and installation of finer spatial and temporal resolution observation networks have aided increased understanding and better predictions.

Research programs, including field projects such as the VORTEX projects (Verification of the Origins of Rotation in Tornadoes Experiment), deployment of TOTO (the TOtable Tornado Observatory), Doppler On Wheels (DOW), and dozens of other programs, hope to solve many questions that still plague meteorologists. Universities, government agencies such as the National Severe Storms Laboratory, private-sector meteorologists, and the National Center for Atmospheric Research are some of the organizations very active in research; with various sources of funding, both private and public, a chief entity being the National Science Foundation.