Home | Menu | Poem | Jokes | Games | Biography | Omss বাংলা | Celibrity Video | Dictionary

World Population Day


Areas worldwide where tornadoes are most likely, indicated by orange shading

The United States has the most tornadoes of any country, nearly four times more than estimated in all of Europe, excluding waterspouts. This is mostly due to the unique geography of the continent. North America is a large continent that extends from the tropics north into arctic areas, and has no major east-west mountain range to block air flow between these two areas. In the middle latitudes, where most tornadoes of the world occur, the Rocky Mountains block moisture and buckle the atmospheric flow, forcing drier air at mid-levels of the troposphere due to downsloped winds, and causing the formation of a low pressure area downwind to the east of the mountains. Increased westerly flow off the Rockies force the formation of a dry line when the flow aloft is strong, while the Gulf of Mexico fuels abundant low-level moisture in the southerly flow to its east. This unique topography allows for frequent collisions of warm and cold air, the conditions that breed strong, long-lived storms throughout the year. A large portion of these tornadoes form in an area of the central United States known as Tornado Alley. This area extends into Canada, particularly Ontario and the Prairie Provinces, although southeast Quebec, the interior of British Columbia, and western New Brunswick are also tornado-prone. Tornadoes also occur across northeastern Mexico.

The United States averages about 1,200 tornadoes per year. The Netherlands has the highest average number of recorded tornadoes per area of any country (more than 20, or 0.0013 per sq mi (0.00048 per km2), annually), followed by the UK (around 33, or 0.00035 per sq mi (0.00013 per km2), per year), but most are small and cause minor damage. In absolute number of events, ignoring area, the UK experiences more tornadoes than any other European country, excluding waterspouts.

Intense tornado activity in the United States. The darker-colored areas denote the area commonly referred to as Tornado Alley.

Tornadoes kill an average of 179 people per year in Bangladesh, the most in the world. This is due to high population density, poor quality of construction and lack of tornado safety knowledge, as well as other factors. Other areas of the world that have frequent tornadoes include South Africa, parts of Argentina, Paraguay, and southern Brazil, as well as portions of Europe, Australia and New Zealand, and far eastern Asia.

Tornadoes are most common in spring and least common in winter. Spring and fall experience peaks of activity as those are the seasons when stronger winds, wind shear, and atmospheric instability are present. Tornadoes are focused in the right front quadrant of landfalling tropical cyclones, which tend to occur in the late summer and autumn. Tornadoes can also be spawned as a result of eyewall mesovortices, which persist until landfall. Favorable conditions can occur any time of the year.

Tornado occurrence is highly dependent on the time of day, because of solar heating. Worldwide, most tornadoes occur in the late afternoon, between 3 pm and 7 pm local time, with a peak near 5 pm. Destructive tornadoes can occur at any time of day. The Gainesville Tornado of 1936, one of the deadliest tornadoes in history, occurred at 8:30 am local time.

Associations with climate and climate change

Associations to various climate and environmental trends exist. For example, an increase in the sea surface temperature of a source region (e.g. Gulf of Mexico and Mediterranean Sea) increases atmospheric moisture content. Increased moisture can fuel an increase in severe weather and tornado activity, particularly in the cool season.

Some evidence does suggest that the Southern Oscillation is weakly correlated with changes in tornado activity, which vary by season and region, as well as whether the ENSO phase is that of El Niño or La Niña.

Climatic shifts may affect tornadoes via teleconnections in shifting the jet stream and the larger weather patterns. The climate-tornado link is confounded by the forces affecting larger patterns and by the local, nuanced nature of tornadoes. Although it is reasonable that global warming may affect trends in tornado activity, any such effect is not yet identifiable due to the complexity, local nature of the storms, and database quality issues. Any effect would vary by region.