Home | Menu | Poem | Jokes | Games | Biography | Omss বাংলা | Celibrity Video | Dictionary

World Population Day

Stealth History

In England, irregular units of gamekeepers in the 17th century were the first to adopt drab colours (common in the 16th century Irish units) as a form of camouflage, following examples from the continent.

Yehudi lights were successfully employed in World War II by RAF Shorts Sunderland aircraft in attacks on U-boats. In 1945 a Grumman Avenger with Yehudi lights got within 3,000 yards (2,700 m) of a ship before being sighted. This ability was rendered obsolete by the radar of the time.

The U-boat U-480 may have been the first stealth submarine. It featured a rubber coating, one layer of which contained circular air pockets to defeat ASDIC sonar.

One of the earliest stealth aircraft seems to have been the Horten Ho 229 flying wing. It included carbon powder in the glue to absorb radio waves. Some prototypes were built, but it was never used in action.

In 1958, the CIA requested funding for a reconnaissance aircraft, to replace U-2 spy planes in which Lockheed secured contractual rights to produce the aircraft. "Kelly" Johnson and his team at Lockheed's Skunk Works were assigned to produce the A-12 or OXCART the first of the former top secret classified Blackbird series which operated at high altitude of 70,000 to 80,000 ft and speed of Mach 3.2 to avoid radar detection. Radar absorbent material had already been introduced on U-2 spy planes, and various plane shapes had been developed in earlier prototypes named A1 to A11 to reduce its detection from radar. Later in 1964, using prior models, an optimal plane shape taking into account compactness was developed where another "Blackbird", the SR-71, was produced, surpassing prior models in both altitude of 90,000 ft and speed of Mach 3.3.

During 1970s, the U.S. Department of Defence then launched a project called Have Blue to develop a stealth fighter. Bidding between both Lockheed and Northrop for the tender was fierce to secure the multi-billion dollar contract. Lockheed incorporated in its program paper written by a Soviet/Russian physicist Pyotr Ufimtsev in 1962 titled Method of Edge Waves in the Physical Theory of Diffraction, Soviet Radio, Moscow, 1962. In 1971 this book was translated into English with the same title by U.S. Air Force, Foreign Technology Division (National Air Intelligence Center ), Wright-Patterson AFB, OH, 1971. Technical Report AD 733203, Defense Technical Information Center of USA, Cameron Station, Alexandria, VA, 22304-6145, USA. This theory played a critical role in the design of American stealth-aircraft F-117 and B-2. The paper was able to find whether a plane's shape design would minimise its detection by radar or its radar cross-section (RCS) using a series of equations could be used to evaluate the radar cross section of any shape. Lockheed used it to design a shape they called the Hopeless Diamond, securing contractual rights to mass produce the F-117 Nighthawk.

The F-117 project began with a model called "The Hopeless Diamond" (a wordplay on the Hope Diamond) in 1975 due to its bizarre appearance. In 1977 Lockheed produced two 60% scale models under the Have Blue contract. The Have Blue program was a stealth technology demonstrator that lasted from 1976 to 1979. The success of Have Blue lead the Air Force to create the Senior Trend program which developed the F-117.

Maximum permissible exposure of laser

Maximum permissible exposure (MPE) at the cornea for a collimated laser beam according to IEC 60825, as energy density versus exposure time for various wavelengths.

The maximum permissible exposure (MPE) is the highest power or energy density (in W/cm2 or J/cm2) of a light source that is considered safe, i.e. that has a negligible probability for creating damage. It is usually about 10% of the dose that has a 50% chance of creating damage under worst-case conditions. The MPE is measured at the cornea of the human eye or at the skin, for a given wavelength and exposure time.


MPE as power density versus exposure time for various wavelengths.

A calculation of the MPE for ocular exposure takes into account the various ways light can act upon the eye. For example, deep-ultraviolet light causes accumulating damage, even at very low powers. Infrared light with a wavelength longer than about 1400 nm is absorbed by the transparent parts of the eye before it reaches the retina, which means that the MPE for these wavelengths is higher than for visible light. In addition to the wavelength and exposure time, the MPE takes into account the spatial distribution of the light (from a laser or otherwise). Collimated laser beams of visible and near-infrared light are especially dangerous at relatively low powers because the lens focuses the light onto a tiny spot on the retina. Light sources with a smaller degree of spatial coherence than a well-collimated laser beam, such as high-power LEDs, lead to a distribution of the light over a larger area on the retina. For such sources, the MPE is higher than for collimated laser beams. In the MPE calculation, the worst-case scenario is assumed, in which the eye lens focuses the light into the smallest possible spot size on the retina for the particular wavelength and the pupil is fully open. Although the MPE is specified as power or energy per unit surface, it is based on the power or energy that can pass through a fully open pupil (0.39 cm2) for visible and near-infrared wavelengths. This is relevant for laser beams that have a cross-section smaller than 0.39 cm2. The IEC-60825-1 and ANSI Z136.1 standards include methods of calculating MPEs.


MPE as energy density versus wavelength for various exposure times (pulse durations).